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Abstract
Estimating the conditional average treatment effect (CATE) from
observational data plays a crucial role in areas such as e-commerce,
healthcare, and economics. Existing studies mainly rely on the
strong ignorability assumption that there are no unmeasured con-
founders, whose presence cannot be tested from observational data
and can invalidate any causal conclusion. In contrast, data collected
from randomized controlled trials (RCT) do not suffer from con-
founding, but are usually limited by a small sample size. In this
paper, we propose a two-stage pretraining-finetuning (TSPF) frame-
work using both large-scale observational data and small-scale RCT
data to estimate the CATE in the presence of unmeasured confound-
ing. In the first stage, a foundational representation of covariates
is trained to estimate counterfactual outcomes through large-scale
observational data. In the second stage, we propose to train an aug-
mented representation of the covariates, which is concatenated to
the foundational representation obtained in the first stage to adjust
for the unmeasured confounding. To avoid overfitting caused by
the small-scale RCT data in the second stage, we further propose
a partial parameter initialization approach, rather than training
a separate network. The superiority of our approach is validated

∗Both authors contributed equally to this research.
†This work was done during the research internship of Yaxuan Li at Peking University.
‡Haoxuan Li and Mingming Gong are corresponding authors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
KDD ’25, August 3–7, 2025, Toronto, ON, Canada
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1245-6/25/08
https://doi.org/10.1145/3690624.3709161

on two public datasets with extensive experiments. The code is
available at https://github.com/zhouchuanCN/KDD25-TSPF.
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1 Introduction
The conditional average treatment effect (CATE) is the average
causal effect of a treatment or an intervention on the outcome of
interest given the covariates [46], which plays an important role
in diverse fields, such as e-commerce [62], healthcare [48], and
economics [30]. In e-commerce, the platforms desire to predict
how recommending a specific product to a particular user affects
the probability of purchase [43], and thereby influence the total
profit. In healthcare, doctors assess the potential outcome for dif-
ferent patient groups when administering a certain treatment [15]
for precision medicine. Similarly in economics, the policymakers
evaluate how much a job training program will raise employment
opportunities for unemployed individuals [9].

To enhance the accuracy of CATE estimation, representation-
based learning approaches have gathered increasing attention due
to their impressive performance [34, 39, 59, 72]. These approaches
focus on generating covariate representations, with the objective of
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mitigating confounding bias by minimizing distributional discrep-
ancies between the treatment group and control group. To obtain
such representations, previous approaches have developed substan-
tial theory and explored extensive practice. For instance, some of
them use integral probability metric (IPM) for regularization [34],
while a few approaches emphasize local similarity preservation
[64], targeted learning [70], and optimal transport [59].

However, the aforementioned methods may ignore unmeasured
confounding, which is very common in real-world scenarios. In
our e-commerce example, the financial status of users should be
sensitive and cannot be collected [42]. In the healthcare case, the
personal lifestyles of patients are difficult to obtain [10]. For the ex-
ample in economics, personal working status is difficult to measure
[63]. These unmeasured variables can affect the treatment and out-
come simultaneously, which causes confounding bias. Therefore,
proposing methods to account for the confounding bias is crucial
to accurately estimate CATE.

To address unmeasured confounding, one category of main-
stream methods can only rely on large-scale observational (OBS)
data, including sensitivity analysis [17, 31], front door adjustment
methods [21, 73], and instrumental variables methods [2, 52]. These
methods require additional strong assumptions that cannot be
tested from the data and raise concerns if these assumptions are
violated [23, 37]. Compared to the OBS data, randomized controlled
trial (RCT) data are considered as the gold standard for causal effect
estimation [47]. However, practical challenges such as high costs
and ethical concerns may make the collection of RCT data difficult
[6, 68], resulting in limited sample sizes. Due to the small size, it
is impractical to directly train causal effect prediction models on
RCT data alone [29]. Therefore, it is necessary to find an effective
method to combine small-scale RCT data with large-scale OBS data.
Some studies use methods of correcting for residuals, in which RCT
data are utilized to correct for biased estimates from OBS data [14].
However, these methods still rely on strong assumptions, including
linear and additive data generation processes [35] and a shared
structure between the two data types (RCT and OBS) [26]. This
can lead to poor model performance in the complex real world. In
contrast, other studies without these assumptions generally use
both types of data to estimate CATE and the residuals between the
biased and unbiased estimates [61], yet these methods suffer from
the risk of overfitting due to insufficient RCT sample sizes.

In this paper, we introduce a two-stage framework named TSPF
for CATE estimation with unmeasured confounding based on the
pretraining-finetuning principle. Our approach leverages large-
scale OBS data to train a foundational representation of covariates
and then uses relatively small-scale RCT data to adjust the repre-
sentation learned from OBS data. We then train a more accurate
prediction model using this adjusted representation. In the second
stage, we introduce an additional module that ensures stronger rep-
resentation ability compared to the methods that use RCT data to
estimate the residuals between the biased and unbiased estimates.

The contributions of this paper are summarized as follows.
• We present a two-stage pretraining-finetuning framework
for estimating the CATE. This framework tackles the issue
of unmeasured confounding by using a small amount of
unconfounded RCT data to calibrate the representations
learned from observational (OBS) data.

• The proposed framework does not rely on the linear and
additive generation assumptions, and can flexibly adjust its
model structure according to the sample size of RCT data,
thus mitigating the over-fitting problem.
• Extensive experiments conducted on the IHDP and Jobs
datasets demonstrate the effectiveness of our approach.

2 Related Work
2.1 CATE Estimation
CATE also known as heterogeneous treatment effect (HTE), refers
to the average causal effects of a treatment on an outcome for
subgroups with different covariates. To accurately estimate CATE,
early statistical methods include matching [16], stratification [45],
reweighting [5, 50], and tree-based methods [13, 58]. With the im-
pressive advances in deep learning, recent CATE estimation meth-
ods can be broadly categorized into representational learning-based
and generative model-based methods. Specifically, the core idea
of representation learning-based methods is to learn a balanced
covariate representation that has similar distributions in the treat-
ment and control groups to mitigate confounding bias [3, 22, 66].
Such balanced representations can be obtained by using integral
probability metric (IPM) for regularization [34, 54], local similarity
preservation [64, 65], targeted learning [55, 70], and optimal trans-
port [56, 59]. An alternative category is generative model-based
methods that estimate the counterfactual outcomes by assuming
their data generation process and exploiting generative models
[22, 69, 74]. Specifically, CEVAE uses variational autoencoder (VAE)
to learn confounders from observed variables [44]. SCIGAN gener-
ates missing counterfactual results based on generative adversarial
networks (GAN) and combines the facts and estimated counter-
factual results to estimate CATE [8]. Unlike previous representa-
tion learning-based methods, we do not require no unmeasured
confounding assumption. Instead, we learn an augmented repre-
sentation to address the effects of unmeasured confounding for
correcting biased estimates.

2.2 Unmeasured Confounding
Unmeasured confounding refers to a situation where there are un-
measured variables in the study that influence both the treatment
and the outcome, which may lead to bias in CATE estimates [1]. To
address this problem, previous studies can be broadly categorized
into two types. The first only uses OBS data and mainly includes
sensitivity analysis and auxiliary information methods. Sensitiv-
ity analysis aims to quantify the potential impact of unmeasured
confounding on the treatment effect and to obtain a bound on the
treatment effect [49, 51]. However, these approaches assume a deter-
mined confounding mechanism of the unmeasured variables [31].
This assumption is too strong and can easily be violated in practice
[18, 57]. Auxiliary information methods in causal inference mainly
include instrumental variable (IV) methods and front-door adjust-
ment methods [41]. IV methods rely on external variables to address
unmeasured confounding in observational studies [32, 52, 60]. How-
ever, these methods assume linearity and require unconfounded in-
struments, posing practical limitations [19]. Front door adjustment
methods estimate the causal effect of a treatment on an outcome by
leveraging a causal pathway, also known as the front-door criterion,
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which blocks all possible influences of unmeasured confounders
[7, 21]. In general, front door adjustment may rely on knowing the
true causal graph, which may not always be feasible in practice
[40, 53]. Another type of approaches combine both OBS and RCT
data to mitigate unmeasured confounding. Kallus et al. [35] propose
to use RCT data to correct the bias in CATE estimates derived from
OBS data under the assumption that the unmeasured confounding
bias is a linear function of the covariates [35]. Hatt et al. [25] extend
to the non-linear case by using shared model structure between
OBS and RCT data. Rather than using OBS and RCT data in separate
regressions, by joint modeling the unmeasured confounding bias
and the CATE with OBS and RCT data simultaneously as input, Wu
et al. [61] identify both the bias from OBS estimates and unbiased
CATE estimates using the R-learner approach, and Cheng et al. [11]
perform a weighted average of the estimates from the two data
sources to mitigate the bias. Both the determination of weights and
the estimation of CATE require a large sample size. However, this
requirement is at odds with the small sample size of RCT. In this
paper, we adopt a more flexible network architecture, with a deep
neural network for predicting biased outcomes using the OBS data
and extra neural networks for adjusting the representation as well
as the prediction using the RCT data, which allows us to utilize
limited RCT data to achieve better performance.

3 Preliminaries
3.1 Problem Setup
We consider two independent data sources taken from the same
target population: one from OBS and the other from RCT. Each
individual in the OBS or RCT study is an observation of (𝑋,𝑌,𝑇 ,𝐺),
a random tuple with distribution 𝑃 . For the 𝑖-th individual, the
observation comprises 𝑑-dimensional covariates 𝑋𝑖 ∈ X ⊆ R𝑑 , the
observed outcome 𝑌𝑖 , the assigned binary treatments 𝑇𝑖 ∈ {0, 1}
(𝑇𝑖 = 0 for the controlled and 𝑇𝑖 = 1 for the treated individuals)
and 𝐺𝑖 denoting participation in the OBS (𝐺𝑖 = 0) or RCT (𝐺𝑖 = 1)
study. Using the Neyman-Rubin potential outcome framework [33],
we let 𝑌 1

𝑖
, 𝑌 0

𝑖
be the potential outcomes. We denote the OBS data

asD𝑂𝐵𝑆 = {(𝑋𝑖 ,𝑇𝑖 , 𝑌𝑖 ,𝐺𝑖 = 0) : 𝑖 ∈ O} with sample size 𝑛, and the
RCT data as D𝑅𝐶𝑇 = {(𝑋𝑖 ,𝑇𝑖 , 𝑌𝑖 ,𝐺𝑖 = 1) : 𝑖 ∈ R} with sample size
𝑚, where O = {1, . . . , 𝑛} andR = {𝑛+1, . . . , 𝑛+𝑚} are sample index
sets for the OBS and RCT data, respectively. The total sample size
is 𝑁 = 𝑛 +𝑚. We define the propensity score as 𝑒 (𝑥,𝐺) = 𝑃 (𝑇 = 1 |
𝑋 = 𝑥,𝐺). The CATE is defined as the conditional expectation of
difference between potential outcomes under the treatment group
and the control group as follows:

𝜏 (𝑥) = E[𝑌 1 − 𝑌 0 | 𝑋 = 𝑥] .

3.2 Identification of CATE
To identify the CATE from observed data, in addition to the Stable
Unit Treatment Value Assumption (SUTVA) that there are no in-
terference between units and there are no different forms of each
treatment level, the following three assumptions are required:

Assumption 1. (Ignorability) (𝑌 1, 𝑌 0) ⊥⊥ 𝑇 | 𝑋 ,

Assumption 2. (Consistency) 𝑌 = 𝑇𝑌 1 + (1 −𝑇 )𝑌 0,

Assumption 3. (Positivity) 0 < 𝑒 (𝑥,𝐺) < 1 for all 𝑥 ∈ X.

Assumption 1 is also known as no unmeasured confounding,
which holds in the RCT by default due to the randomized treatment
assignment. We can identify CATE based on RCT:

𝜏 (𝑥) = E[𝑌 | 𝑇 = 1, 𝑋 = 𝑥,𝐺 = 1] − E[𝑌 | 𝑇 = 0, 𝑋 = 𝑥,𝐺 = 1] .

Compared to RCT data, unmeasured confounding may exist in
OBS data. Unconfoundedness assumption is not assumed to hold for
the observational data, i.e., (𝑌 1, 𝑌 0) ⊥̸⊥ 𝑇 | (𝑋,𝐺 = 0). We may not
identify 𝜏 (𝑥) only based on OBS data. Let us denote the difference
in conditional average outcomes in the observational data by:

𝜔 (𝑥) = E [𝑌 | 𝑇 = 1, 𝑋 = 𝑥,𝐺 = 0] − E [𝑌 | 𝑇 = 0, 𝑋 = 𝑥,𝐺 = 0] .

Note that due to unmeasured confounding, 𝜔 (𝑥) ≠ 𝜏 (𝑥) for
any 𝑥 . The difference between these two quantities is precisely the
confounding effect, which we denote the residual function as:

𝜂 (𝑥) = 𝜏 (𝑥) − 𝜔 (𝑥) .

In each treatment group, we denote the residual functions:
𝜂𝑡 (𝑥) = E[𝑌 | 𝑇 = 1, 𝑋 = 𝑥,𝐺 = 0] − E[𝑌 | 𝑇 = 1, 𝑋 = 𝑥,𝐺 = 1],
𝜂𝑐 (𝑥) = E[𝑌 | 𝑇 = 0, 𝑋 = 𝑥,𝐺 = 0] − E[𝑌 | 𝑇 = 0, 𝑋 = 𝑥,𝐺 = 1] .

3.3 Previous Work
To address the unmeasured confounding, previous work proposes
many methods to estimate the residual function 𝜂 (𝑥) and obtain an
accurate estimation of CATE 𝜏 (𝑥) with extra small-scale RCT data.

3.3.1 Residual Correction. This type of approaches first only uses
the OBS data for initial estimation and then uses RCT data for
correcting the biased estimation with a residual function [35].

Step 1: Estimate 𝜔 (𝑥) using the OBS data, denoted as �̂� (𝑥).
Step 2: Estimate 𝜂 (𝑥) using the RCT data by minimizing:

min
𝜂

∑︁
𝑖∈R
(𝑌 ∗𝑖 − �̂� (𝑋𝑖 ) − 𝜂 (𝑋𝑖 ))

2,

where 𝑌 ∗
𝑖
=

𝑇𝑖𝑌𝑖
𝑒 (𝑋𝑖 ,𝐺𝑖 ) −

(1−𝑇𝑖 )𝑌𝑖
1−𝑒 (𝑋𝑖 ,𝐺𝑖 ) is the pseudo-outcome.

The final estimate of 𝜏 (𝑥) is �̂� (𝑥) + 𝜂 (𝑥). To ensure a consistent
estimate of 𝜏 (𝑥), the residual 𝜂 (𝑥) is assumed to be linear and
additive. Moreover, the small-scale RCT data used in the second
phase may cause overfitting of the estimated residual 𝜂 (𝑥).

3.3.2 Joint Learning of Residual and CATE Models. This type of
approaches involves training the models for estimating 𝜂 (𝑥) and
𝜏 (𝑥) simultaneously using both OBS and RCT data [61].

Step 1: Estimate the conditional average outcome 𝜇 (𝑋,𝐺) and
propensity score 𝑒 (𝑋,𝐺) by using the combined OBS and RCT data,
denoted as 𝜇 (𝑋,𝐺) and 𝑒 (𝑋,𝐺).

Step 2: Estimate {𝜂 (·), 𝜏 (·)} by the optimization problem:

argmin
𝜂,𝜏

∑︁
𝑖∈O∪R

{𝑌𝑖 − 𝜇 (𝑋𝑖 ,𝐺𝑖 ) − [𝜏 (𝑋𝑖 ) + (1 −𝐺𝑖 )𝜂 (𝑋𝑖 )]

· [𝑇𝑖 − 𝑒 (𝑋𝑖 ,𝐺𝑖 )]}2 + Λ(𝜏) + Λ(𝜂),

where Λ(𝜏) and Λ(𝜂) are regularization terms on the complexity
of the 𝜏 (·) and 𝜂 (·) functions.

Since RCT generally involves much smaller sample sizes com-
pared to OBS studies, the data available for explicitly learning 𝜂 (𝑥)
is limited. Insufficient RCT data can lead to overfitting and a high
variance of 𝜂 (𝑥), thus reducing the accuracy of CATE estimation.
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Figure 1: The framework of our proposed method, which is composed of the modules for the first stage (blue) and second stage
(yellow). Note that the two 𝜙𝑈 shown in the figure represent the same module.

4 Methodology
In this section, we present a two-stage framework for CATE esti-
mation based on the pretraining-finetuning principle, as shown in
Figure 1. The motivation is to use large-scale OBS data to train a
base representation of covariates, then use relatively small-scale un-
biased RCT data to calibrate the bias in the representation learned
from OBS data for training the unbiased prediction model. Specifi-
cally, in the first stage, only the OBS data is used. We start with a
representation module 𝜙 , followed by one reconstruction module
𝜓 and two prediction heads ℎ0 and ℎ1 to ensure the learned covari-
ate representation can have enough information and predict the
outcome for control group and treatment group simultaneously.
While in the second stage, we use only the RCT data. The represen-
tation module 𝜙 learned in the first stage is frozen, with a learnable
representation adapter module 𝜙𝑈 to calibrate the bias of 𝜙 . Then
the concatenated representation is fed to two prediction heads 𝑔0
and 𝑔1 to obtain the unbiased predicted potential outcomes under
control and treatment groups respectively. We carefully design an
initialization strategy to ensure that the initialized second-stage
model produces the same predictions as the converged model in the
first stage. Our approach distinguishes from the one proposed by
Kallus et al. [35], which only uses linear regression to estimate the
residual function 𝜂 (𝑥) in the second stage. We can regard the first
stage as pretraining on the large OBS data and the second stage as
finetuning on the small-scale unbiased RCT data.

4.1 First Stage: Pretraining Stage
The goal of our first-stage training is to obtain a representation
module as well as prediction heads that can accurately estimate the
potential outcomes of OBS data. These modules offer high-quality
initialization for second-stage training, allowing fine-tuning on
the RCT data to avoid the overfitting problem. A three-headed
architecture and a multi-task training framework are employed to
achieve this goal. Next, we will look into the details of each module.

4.1.1 Representation. We design a multi-layer feed-forward neural
network 𝜙 to obtain a representation 𝑍 for the covariates 𝑋 for
both treatment and control groups. In other words, for an individual
sample (𝑋𝑖 ,𝑇𝑖 , 𝑌𝑖 ,𝐺𝑖 = 0), the representation 𝑍𝑖 = 𝜙 (𝑋𝑖 ) remains
the same whether 𝑇𝑖 = 0 or 𝑇𝑖 = 1. To better estimate the causal
effect, we adopt the idea of covariate balancing on the represen-
tation space as Shalit et al. [54] Specifically, the representations
for treatment group {𝑍𝑖 = 𝜙 (𝑋𝑖 ) : 𝐺𝑖 = 0,𝑇𝑖 = 1} are regarded as
i.i.d samples drawn randomly from a distribution 𝑃𝑡=1

𝜙
and simi-

larly 𝑃𝑡=0
𝜙

for the control group. We anticipate the distributions of
representations to be similar between the treatment and control
groups. An integral probability metric (IPM) is employed to mea-
sure the distance between the two distributions. Thus the covariate
imbalancing loss is defined as:

L𝑖𝑚𝑏 = IPMG (𝑃𝑡=0𝜙
, 𝑃𝑡=1

𝜙
),
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where IPMG (·) is the empirical IPM defined by the function family
G, and 𝑃𝑡=1

𝜙
and 𝑃𝑡=0

𝜙
are empirical distributions of 𝑃𝑡=1

𝜙
and 𝑃𝑡=0

𝜙

respectively. In the implementation, we adopt Wasserstein distance
as a showcase, which can be consistently estimated from finite
samples within a mini-batch [20].

4.1.2 Reconstruction and Prediction. To ensure that 𝑍 retains as
much information about the original covariates as possible, we
introduce the decoder network𝜓 to reconstruct the original covari-
ates: 𝑋 = 𝜓 (𝑍 ) = 𝜓 (𝜙 (𝑋 )). The reconstruction loss is computed by
the mean squared error (MSE):

L𝑟𝑒𝑐 =
1
|O|

∑︁
𝑖∈O
| |𝑋𝑖 − 𝑋𝑖 | |22,

where 𝑋𝑖 = 𝜓 (𝜙 (𝑋𝑖 )) is reconstructed covariate for the 𝑖-th sam-
ple in the OBS data. The reconstruction design resembling an au-
toencoder allows the learned representations to encompass nearly
complete information in the covariates, rather than only the infor-
mation necessary for fitting the training set, thereby enhancing the
generalization of our representation module.

We then use the representations 𝑍 to estimate the potential
outcomes with two 𝑙𝑝−layer prediction heads ℎ0 and ℎ1, which are
the predictors for control and treatment outcomes, respectively.
Note that unmeasured confounding in the observational data can
lead to biased estimations of potential outcomes, we refer to the
prediction result �̃� 0 = ℎ0 (𝑍 ) = ℎ0 (𝜙 (𝑋 )) as the pseudo control
outcome and �̃� 1 = ℎ1 (𝑍 ) = ℎ1 (𝜙 (𝑋 )) as the pseudo treatment
outcome. To enhance comparability between the treatment group
and control group, we employ a reweighting technique to balance
the two groups. Formally, let 𝑓ℎ (𝑥, 𝑡) = ℎ𝑡 (𝜙 (𝑥)) with 𝑡 ∈ {0, 1} be
the predicted potential outcomes by via the two heads ℎ0 and ℎ1,
the loss for outcome prediction is as follows:

L𝑓 =
1
|O|

∑︁
𝑖∈O

𝑤𝑖 · 𝑙 (𝑌𝑖 , 𝑓ℎ (𝑋𝑖 ,𝑇𝑖 )),

with 𝑤𝑖 =
𝑇𝑖
2𝑢 +

1−𝑇𝑖
2(1−𝑢 ) , where 𝑢 = 1

𝑛

∑𝑛
𝑖=1𝑇𝑖 . The loss function

𝑙 (·, ·) in L𝑓 is flexible and can be determined based on the value
range of potential outcomes. If the potential outcomes are binary, a
cross-entropy loss is appropriate, whereas for continuous potential
outcomes, an MSE loss is preferable.

In summary, in the first-stage training, we use the following
training objective:

min
𝜙,𝜓,ℎ0,ℎ1

L𝑓 + 𝜆1L𝑟𝑒𝑐 + 𝜆2L𝑖𝑚𝑏 ,

where 𝜆1 > 0 and 𝜆2 > 0 are tunable hyperparameters.

4.2 Second Stage: Finetuning Stage
In the second stage of training, we exploit the small-scale uncon-
founded RCT data to remove the hidden confounding by concate-
nating the learned covariate representation in the first stage with a
newly learned augmented covariate representation, then finetuning
the prediction heads to obtain an unbiased CATE estimation. To
achieve this, we keep the biased representation 𝑍 produced by 𝜙
unchanged but only treat it as a part of the representation, together
with an additional 𝑍𝑈 generated by another representation module
𝜙𝑈 . We call 𝜙𝑈 a representation adapter, as it helps to adapt the

final representation to account for the hidden confounding in the
observed data. In addition, a large proportion of the parameters of
the prediction heads 𝑔0 and 𝑔1 are initialized by ℎ0 and ℎ1, respec-
tively. With the above steps, the second stage aims at adjusting the
hidden confounding through the augmented covariate represen-
tation and the finetuned prediction heads with partial parameter
initialization. Below we explain the modules in detail.

4.2.1 Representation Adapter. Weemploy a shallower feed-forward
network 𝜙𝑈 as the representation adapter. It is worth noting that
the width and depth of 𝜙𝑈 can be adjusted based on the scale of
RCT data size. If the size of RCT data was comparable to that of OBS
data, we can use the same architecture as 𝜙 . However, in real-world
cases, the RCT data is rare compared to the OBS data, so the size
of 𝜙𝑈 should be smaller. We denote the representation generated
by 𝜙𝑈 as 𝑍𝑈 . To make sure that 𝑍𝑈 captures different features of
covariates from 𝑍 , we employ mutual information to control the
overlap between the two covariate representations:

L𝑀𝐼 = 𝐶𝐿𝑈𝐵(𝑍, 𝑍𝑈 ),

𝐶𝐿𝑈𝐵(𝑍, 𝑍𝑈 ) = 1
𝑚2

∑︁
𝑖∈R

∑︁
𝑗∈R

[
log𝑞𝜃 (𝑍𝑈

𝑖 | 𝑍𝑖 ) − log𝑞𝜃 (𝑍
𝑈
𝑗 | 𝑍𝑖 )

]
=

1
𝑚

∑︁
𝑖∈R

[
log𝑞𝜃 (𝑍𝑈

𝑖 | 𝑍𝑖 ) −
1
𝑚

∑︁
𝑗∈R

log𝑞𝜃 (𝑍𝑈
𝑗 | 𝑍𝑖 )

]
,

where 𝐶𝐿𝑈𝐵(𝑍, 𝑍𝑈 ) is the empirical Contrastive Log-ratio Upper
Bound (CLUB) of mutual information [12] between two covariate
representations 𝑍 and 𝑍𝑈 , and 𝑞𝜃 (𝑍𝑈 | 𝑍 ) is the variational ap-
proximation of 𝑃 (𝑍𝑈 | 𝑍 ). With good variational approximation
𝑞𝜃 (𝑍𝑈 | 𝑍 ), it can be shown that the empirical CLUB is still a valid
upper bound of the ground-truth mutual information.

4.2.2 Prediction. Similarly to the first stage, we design two 𝑙𝑝−layer
prediction heads𝑔0 and𝑔1 to estimate the potential outcomes under
control and treatment groups with unmeasured confoundings, re-
spectively. Notice that 𝑔0, 𝑔1 and ℎ0, ℎ1 have the same depth 𝑙𝑝 , yet
every layer of 𝑔𝑡 has a larger or equal width than ℎ𝑡 . For 𝑡 ∈ {0, 1},
we define the header ℎ𝑡 as:

𝑎
(0)
ℎ𝑡

= 𝑍, 𝑎
(𝑙 )
ℎ𝑡

= 𝜎 (𝑊 (𝑙 )
ℎ𝑡

𝑎
(𝑙−1)
ℎ𝑡

+ 𝑏 (𝑙 )
ℎ𝑡
), for 𝑙 = 1, 2, . . . , 𝑙𝑝 − 1,

𝑎
(𝑙𝑝 )
ℎ𝑡

= �̃�𝑡 =𝑊
(𝑙𝑝 )
ℎ𝑡

𝑎
(𝑙𝑝−1)
ℎ𝑡

+ 𝑏 (𝑙𝑝 )
ℎ𝑡

,

where𝑊 (𝑙 )
ℎ𝑡

is the weight matrix from layer 𝑙−1 to layer 𝑙 ,𝑏 (𝑙 )
ℎ𝑡

is the

bias vector of layer 𝑙 , 𝑎 (𝑙 )
ℎ𝑡

is the output of layer 𝑙 for 𝑙 ∈ {1, 2, . . . , 𝑙𝑝 }
and 𝜎 is the activation function. The definition of 𝑔𝑡 is:

𝑎
(0)
𝑔𝑡 =

[
𝑍

𝑍𝑈

]
, 𝑎
(𝑙 )
𝑔𝑡 = 𝜎 (𝑊 (𝑙 )𝑔𝑡 𝑎

(𝑙−1)
𝑔𝑡 + 𝑏 (𝑙 )𝑔𝑡 ), for 𝑙 = 1, 2, . . . , 𝑙𝑝 − 1,

𝑎
(𝑙𝑝 )
𝑔𝑡 = 𝑌𝑡 =𝑊

(𝑙𝑝 )
𝑔𝑡 𝑎

(𝑙𝑝−1)
𝑔𝑡 + 𝑏 (𝑙𝑝 )𝑔𝑡 ,

with𝑊 (𝑙 )𝑔𝑡 , 𝑏
(𝑙 )
𝑔𝑡 , 𝑎

(𝑙 )
𝑔𝑡 having similar meanings as𝑊 (𝑙 )

ℎ𝑡
, 𝑏
(𝑙 )
ℎ𝑡

, 𝑎
(𝑙 )
ℎ𝑡

but
for 𝑔𝑡 , 𝑌𝑡 is the final prediction for potential outcome under treat-
ment 𝑡 . In our design, every layer of 𝑔𝑡 has a larger or equal width
than ℎ𝑡 , thus the dimension of𝑊 (𝑙 )𝑔𝑡 , 𝑏

(𝑙 )
𝑔𝑡 , 𝑎

(𝑙 )
𝑔𝑡 is no less than that
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Algorithm 1: Learning algorithm of the TSPF framework.

Input: OBS data D𝑂𝐵𝑆 = {(𝑋𝑖 ,𝑇𝑖 , 𝑌𝑖 ,𝐺𝑖 = 0)}𝑛
𝑖=1, RCT data

D𝑅𝐶𝑇 = {(𝑋𝑖 ,𝑇𝑖 , 𝑌𝑖 ,𝐺𝑖 = 1)}𝑛+𝑚
𝑖=𝑛+1 and four

hyperparameters 𝜆𝑘 > 0, 𝑘 = 1, . . . , 4.
Compute𝑤𝑖 =

𝑇𝑖
2𝑢 +

1−𝑇𝑖
2(1−𝑢 ) with 𝑢 = 1

𝑛

∑𝑛
𝑖=1𝑇𝑖 for

𝑖 = 1, ..., 𝑛;
for number of steps for training the first-stage model do

Sample a batch {(𝑋𝑖 ,𝑇𝑖 , 𝑌𝑖 )}𝑖∈𝐵 from D𝑂𝐵𝑆 ;
Update 𝜃1 = (𝜃𝜙 , 𝜃𝜓 , 𝜃ℎ0 , 𝜃ℎ1 ) by descending along the
gradient ∇𝜃1 (L𝑓 + 𝜆1L𝑟𝑒𝑐 + 𝜆2L𝑢𝑛𝑏 );

end
Initialize (1𝑊 (𝑙 )𝑔𝑡 ,2𝑊 (𝑙 )𝑔𝑡 ,3𝑊 (𝑙 )𝑔𝑡 ,4𝑊 (𝑙 )𝑔𝑡 ,1 𝑏 (𝑙 )𝑔𝑡 ,2 𝑏 (𝑙 )𝑔𝑡 ) by
(𝑊 (𝑙 )

ℎ𝑡
, 0, 0, 0, 𝑏 (𝑙 )

ℎ𝑡
, 0) for 𝑙 = 1, 2, . . . , 𝑙𝑝 and 𝑡 = 0, 1;

Compute𝑤𝑖 =
𝑇𝑖
2𝑢 +

1−𝑇𝑖
2(1−𝑢 ) with 𝑢 = 1

𝑚

∑𝑛+𝑚
𝑖=𝑛+1𝑇𝑖 for

𝑖 = 𝑛 + 1, ..., 𝑛 +𝑚;
for number of steps for training the second-stage model do

Sample a batch {(𝑋𝑖 ,𝑇𝑖 , 𝑌𝑖 )}𝑖∈𝐵 from D𝑅𝐶𝑇 ;
Update 𝜃2 = (𝜃𝜙𝑈 , 𝜃𝑔0 , 𝜃𝑔1 ) by descending along the
gradient ∇𝜃2 (L𝑝𝑟𝑒𝑑 + 𝜆3L𝑀𝐼 + 𝜆4L𝑠ℎ𝑖 𝑓 𝑡 );

end

of𝑊 (𝑙 )
ℎ𝑡

, 𝑏
(𝑙 )
ℎ𝑡

, 𝑎
(𝑙 )
ℎ𝑡

respectively. We divide the parameters of 𝑔𝑡 as:

𝑊
(𝑙 )
𝑔𝑡 =

[
1𝑊 (𝑙 )𝑔𝑡 ,2𝑊 (𝑙 )𝑔𝑡
3𝑊 (𝑙 )𝑔𝑡 ,4𝑊 (𝑙 )𝑔𝑡

]
, 𝑏
(𝑙 )
𝑔𝑡 =

[
1𝑏 (𝑙 )𝑔𝑡
2𝑏 (𝑙 )𝑔𝑡

]
,

where 1𝑊 (𝑙 )𝑔𝑡 ,1 𝑏 (𝑙 )𝑔𝑡 have the same shapes as𝑊 (𝑙 )
ℎ𝑡

, 𝑏
(𝑙 )
ℎ𝑡

respectively,
for 𝑙 = 1, 2, . . . , 𝑙𝑝 , with the detailed initialization strategy as follows.

Initialization. The initialization of the model parameters is cru-
cial for the preservation of covariate information from the first
stage as well as the effectiveness of the finetuning stage. The goal
of initialization is to make sure the model initially produces the
same prediction as the trained first-stage model. Nonetheless, a
challenge of parameter initialization is that the model architecture
of the second stage differs from that of the first stage, because of
the augmented covariate representation. Based on the division of
the parameters, we propose the following initialization strategy:

(1𝑊 (𝑙 )𝑔𝑡 ,2𝑊 (𝑙 )𝑔𝑡 ,3𝑊 (𝑙 )𝑔𝑡 ,4𝑊 (𝑙 )𝑔𝑡 ,1 𝑏 (𝑙 )𝑔𝑡 ,2 𝑏 (𝑙 )𝑔𝑡 ) ← (𝑊
(𝑙 )
ℎ𝑡

, 0, 0, 0, 𝑏 (𝑙 )
ℎ𝑡

, 0)

for 𝑙 = 1, 2, . . . , 𝑙𝑝 . That is, the shared parameters between the
prediction heads 𝑔𝑡 and ℎ𝑡 are initialized to be the same, and the
rest parameters of the prediction head 𝑔𝑡 are initialized to be zero.

As in the first stage, we denote 𝑓𝑔 (𝑥, 𝑡) = 𝑔𝑡 ( [𝜙 (𝑥)⊺ |𝜙𝑈 (𝑥)⊺]⊺)
for 𝑡 ∈ {0, 1}, where [𝜙 (𝑥)⊺ |𝜙𝑈 (𝑥)⊺] is the concatenated covariate
representation. Given the RCT data {(𝑋𝑖 ,𝑇𝑖 , 𝑌𝑖 ,𝐺𝑖 = 1) : 𝑖 ∈ A},
the prediction loss is computed as:

L𝑝𝑟𝑒𝑑 =
1
|R |

∑︁
𝑖∈R

𝑤𝑖 · 𝑙 (𝑌𝑖 , 𝑓𝑔 (𝑋𝑖 ,𝑇𝑖 )),

similarly with𝑤𝑖 =
𝑇𝑖
2𝑢 +

1−𝑇𝑖
2(1−𝑢 ) and 𝑢 = 1

𝑚

∑𝑛+𝑚
𝑖=𝑛+1𝑇𝑖 .

Regularization. The presence of unmeasured confounding may
cause a slight shift in the distribution of OBS data from the RCT data.
Therefore the second-stage fine-tuned model should not deviate
significantly from the first-stage model. We denote the initial value
of 𝜃𝑔𝑡 as 𝜃0𝑔𝑡 . In order to constrain the deviation from the initial
value, we include an 𝑙2−norm in the loss function:

L𝑠ℎ𝑖 𝑓 𝑡 = | |𝜃𝑔0 − 𝜃0𝑔0 | |
2
2 + ||𝜃𝑔1 − 𝜃

0
𝑔1 | |

2
2 .

Overall, the training objective of the second stage is given by:

min
𝜙𝑈 , 𝑔0, 𝑔1

L𝑝𝑟𝑒𝑑 + 𝜆3L𝑀𝐼 + 𝜆4L𝑠ℎ𝑖 𝑓 𝑡 ,

where 𝜆3 > 0 and 𝜆4 > 0 are tunable hyperparameters. Note that
during the second-phase training, we froze the parameters of the
representation module 𝜙 and the decoder network𝜓 , while train
the representation adapter module𝜙𝑈 and the two prediction heads
𝑔0, 𝑔1. We summarize the whole learning algorithm in Alg. 1.

Compared to residual correction methods as in Kallus et al. [35],
our representation adapter module guarantees a stronger repre-
sentation ability, relaxing the linearly additive assumption. While
compared to methods that jointly learn residual and CATE, one
advantage is that when RCT data are limited, our proposed partial
initialization strategy in the TSPF framework can avoid overfitting.

5 Experiment
5.1 Datasets
Following previous studies [44, 54, 67], we conduct experiments on
two publicly available datasets, namely IHDP [28] and Jobs [54].
The IHDP is a semi-synthetic dataset for causal effect estimation.
The dataset is based on the Infant Health and Development Pro-
gram, where the covariates are obtained by a randomized experi-
ment investigating the effect of home visits by specialists on future
cognitive scores. It consists of 747 units (19% treated, 81% control)
and 25 covariates measuring the children and their mothers. The
Jobs is a common benchmark dataset developed by LaLonde in
1986, studying the change of income and employment status after
job training. We use an extended version of Jobs that comprises
about 3,000 units (10% treated, 90% control) with 17 covariates.

5.2 Data Preprocessing
For both IHDP and Jobs, we simulate unmeasured confounding by
generating a 𝑐-dimensional confounder 𝑈𝑖 ∈ R𝑐 . To make sure the
𝑈𝑖 has a non-zero effect on 𝑌𝑖 and 𝑇𝑖 , we generate the data below:

𝑊1 ∼ N(0, 0.1)𝑑 , 𝑊2 ∼ N(0.02, 0.1)𝑐 , 𝑊3 ∼ N(0.1, 1)𝑑 ,

𝑊4 ∼ N(0.1, 1)𝑐 , 𝑊5 ∼ U(0, 0.2)𝑑 , 𝑊6 ∼ U(0, 0.2)𝑐 ,
𝑈𝑖 ∼ U(0, 0.2)𝑐 , 𝑇𝑖 ∼ Bern(𝜎 (𝑊1 · 𝑋𝑖 +𝑊2 ·𝑈𝑖 )),
𝜇0𝑖 =𝑊3 · 𝑋𝑖 +𝑊4 ·𝑈𝑖 , 𝜇

1
𝑖 =𝑊5 · 𝑋𝑖 +𝑊6 ·𝑈𝑖 + 4,

𝑌 0
𝑖 ∼ N(𝜇

0
𝑖 , 0.1), 𝑌

1
𝑖 ∼ N(𝜇

1
𝑖 , 0.1),

where N(𝜇, 𝐷) denotes the normal distribution with mean 𝜇 and
variance 𝐷 ,U(𝑎, 𝑏) is the uniform distribution on interval (𝑎, 𝑏),
Bern(𝑝) means the Bernoulli distribution with probability 𝑝 , 𝜎 (𝑥) =
1/(1+exp(−𝑥)) is the sigmoid function. Note that we keep 𝐸 [𝑌 1

𝑖
] =

𝐸 [𝑌 0
𝑖
] + 4 as the same as the IHDP dataset and we let 𝐸 [𝑊𝑖 ] >
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Table 1: The experiment results on the IHDP dataset and Jobs dataset. The best result is bolded and the second best is underlined.

IHDP Jobs

In-sample Out-sample In-sample Out-sample

Methods √
𝜖PEHE 𝜖ATE

√
𝜖PEHE 𝜖ATE

√
𝜖PEHE 𝜖ATE

√
𝜖PEHE 𝜖ATE

T-learner 0.44 ± 0.03 0.04 ± 0.02 0.52 ± 0.05 0.02 ± 0.01 0.66 ± 0.27 0.02 ± 0.02 0.60 ± 0.20 0.02 ± 0.01
S-learner 0.98 ± 0.18 0.04 ± 0.03 1.37 ± 0.34 0.15 ± 0.10 0.70 ± 0.30 0.02 ± 0.02 0.67 ± 0.39 0.03 ± 0.02
DR-learner 0.71 ± 0.19 0.06 ± 0.04 0.81 ± 0.25 0.06 ± 0.03 0.50 ± 0.07 0.07 ± 0.02 0.48 ± 0.09 0.07 ± 0.03
Causal Forest 1.90 ± 0.29 0.07 ± 0.05 2.04 ± 0.42 0.19 ± 0.11 1.38 ± 0.40 0.13 ± 0.08 1.23 ± 0.35 0.14 ± 0.08
TARNet 0.42 ± 0.09 0.05 ± 0.04 0.44 ± 0.12 0.05 ± 0.05 0.19 ± 0.17 0.02 ± 0.01 0.13 ± 0.02 0.02 ± 0.01
CEVAE 2.89 ± 0.72 0.15 ± 0.12 2.87 ± 0.80 0.22 ± 0.16 2.86 ± 0.80 0.35 ± 0.24 2.82 ± 0.74 0.46 ± 0.38
SCIGAN 2.53 ± 0.47 0.63 ± 0.29 2.58 ± 0.57 0.55 ± 0.48 2.28 ± 0.75 0.56 ± 0.15 2.15 ± 0.80 0.47 ± 0.21
DragonNet 0.19 ± 0.04 0.03 ± 0.02 0.26 ± 0.08 0.04 ± 0.02 0.15 ± 0.11 0.01 ± 0.01 0.11 ± 0.03 0.01 ± 0.01
DESCN 0.28 ± 0.06 0.05 ± 0.05 0.41 ± 0.11 0.07 ± 0.06 0.44 ± 0.09 0.28 ± 0.13 0.44 ± 0.08 0.27 ± 0.13
DRCFR 0.74 ± 0.32 0.15 ± 0.10 0.90 ± 0.52 0.18 ± 0.17 0.91 ± 0.49 0.08 ± 0.08 0.71 ± 0.43 0.09 ± 0.07
Twostep linear 0.64 ± 0.13 0.31 ± 0.23 0.87 ± 0.18 0.56 ± 0.24 0.69 ± 0.35 0.20 ± 0.12 0.56 ± 0.27 0.25 ± 0.16
CorNet 0.34 ± 0.12 0.05 ± 0.03 0.32 ± 0.09 0.04 ± 0.04 0.21 ± 0.09 0.04 ± 0.04 0.22 ± 0.08 0.05 ± 0.03
TSFP (ours) 0.13 ± 0.02 0.02 ± 0.02 0.16 ± 0.04 0.04 ± 0.02 0.09 ± 0.03 0.01 ± 0.01 0.06 ± 0.01 0.01 ± 0.01

0 for 𝑖 ∈ {2, 4, 6} to ensure the non-zero effect of 𝑈𝑖 . The unmea-
sured confounding strength parameter 𝑐 is set to 30. Then we slice
the training, validation, and test sets in the ratio of 63/27/10. In
addition, to obtain a separate RCT training dataset for data fusion,
we first randomly split 𝑟% of the training samples, and then assign
treatments 𝑇𝑛𝑒𝑤

𝑖
according to the following formula and replace

the factual treatment 𝑇𝑖 and outcome 𝑌 𝑓

𝑖
to obtain a RCT dataset:

𝑇𝑛𝑒𝑤
𝑖 = Bern(0.5), 𝑌𝑛𝑒𝑤

𝑖 = I(𝑇𝑛𝑒𝑤
𝑖 = 𝑇𝑖 ) (𝑌 𝑓

𝑖
− 𝑌𝑐 𝑓

𝑖
) + 𝑌𝑐 𝑓

𝑖
,

where I(·) is the indicator function, 𝑌 𝑓

𝑖
= 𝑇𝑖𝑌

1
𝑖
+ (1 −𝑇𝑖 )𝑌 0

𝑖
is the

factual outcome, and 𝑌𝑐 𝑓

𝑖
= 𝑇𝑖𝑌

0
𝑖
+ (1 −𝑇𝑖 )𝑌 1

𝑖
is the counterfactual

outcome. The RCT data ratio 𝑟% is set to 10% unless otherwise
stated. Finally, we replace the𝑇𝑖 and 𝑌𝑖 using the above formula for
all samples in the validation set.

5.3 Baselines and Evaluation Metrics
5.3.1 Baselines.

• T-learner [38]: T-learner utilizes two separate regressors for
each treatment group.
• S-learner [4]: S-learner treats the indicator of treatment as
features, utilizing a single model to estimate the potential
outcome for both treatment and control groups.
• DR-learner [36]: DR-learner estimates the CATE via cross-
fitting a doubly robust score function in two stages.
• SCIGAN [67]: SCIGAN utilizes a generative adversarial net-
work to model treatment effect.
• Causal Forest [58]: Causal Forest is a random forest-based
model that directly estimates the treatment effect.
• TARNet [54]: TARNet applies a shared representation layer
and a two-head network inference layer.
• DragonNet [55]: DragonNet designs an adaptive neural net-
work to learn propensities and counterfactual outcomes.

• DESCN [71]: DESCN uses deep networks to model treatment
effects in the entire sample space.
• DRCFR [24]: DRCFR aims to learn disentangled representa-
tions and address selection bias in CATE estimation.
• Twostep linear [35]: Twostep linear method uses OBS data
to learn a biased estimate for the treatment effect and then
aims to remove the bias using RCT data.
• CorNet [26]: CorNet uses the RCT data to learn a non-linear
bias function in the second stage.

5.3.2 Evaluation Metrics. Following previous studies [54, 64], we
evaluate the performance of CATE estimation using the square root
of Precision in Estimation of Heterogeneous Effects (PEHE):

√
𝜖PEHE =

√√
1
𝑛

𝑛∑︁
𝑖=1
((𝑌 1

𝑖
− 𝑌 0

𝑖
) − (𝑌 1

𝑖
− 𝑌 0

𝑖
))2,

where 𝑌 𝑡
𝑖
and 𝑌 𝑡

𝑖
are the predicted and ground truth values for the

potential outcomes of individual 𝑖 under treatment 𝑡 . In addition,
we also use the absolute error in Average Treatment Effect (ATE) to
evaluate estimation performance, which is defined as:

𝜖ATE =
1
𝑛

����� 𝑛∑︁
𝑖=1
((𝑌 1

𝑖 − 𝑌
0
𝑖 ) − (𝑌

1
𝑖 − 𝑌

0
𝑖 ))

����� .
The smaller the evaluation metrics, the better the estimation.

5.3.3 Experimental Details. We implement TSPF with a multi-layer
perceptron [27] with 2 layers for our representation and reconstruc-
tion modules as well as the prediction heads in both stages using
the PyTorch framework. We tune the hyper-parameters in the loss
functions from 1𝑒 − 5 to 0.1, the learning rate from 1𝑒 − 5 to 1𝑒 − 2,
and the weight decay parameter from 1𝑒−5 to 1𝑒−2. The batch size
is set to 256 in all scenarios and the optimizer is selected in Adam
and SGD. We report both in-sample and out-of-sample results for
metrics √𝜖PEHE and 𝜖ATE in our experiments.
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Table 2: Ablation study on the pretraining stage and fine-tuning stage, the initialization strategy, and the training strategy of
freezing foundational representation module and the initialized parameters.

IHDP Jobs

In-sample Out-sample In-sample Out-sample
√
𝜖PEHE 𝜖ATE

√
𝜖PEHE 𝜖ATE

√
𝜖PEHE 𝜖ATE

√
𝜖PEHE 𝜖ATE

TSFP w/o L𝑟𝑒𝑐 and L𝑖𝑚𝑏 0.25 ± 0.05 0.07 ± 0.02 0.29 ± 0.08 0.07 ± 0.02 0.19 ± 0.03 0.04 ± 0.03 0.18 ± 0.02 0.04 ± 0.03
TSFP w/o L𝑟𝑒𝑐 0.21 ± 0.04 0.05 ± 0.02 0.24 ± 0.05 0.05 ± 0.02 0.14 ± 0.01 0.03 ± 0.01 0.13 ± 0.02 0.03 ± 0.01
TSFP w/o L𝑖𝑚𝑏 0.18 ± 0.03 0.03 ± 0.02 0.19 ± 0.05 0.05 ± 0.02 0.12 ± 0.02 0.03 ± 0.02 0.10 ± 0.04 0.03 ± 0.01

TSFP w/o L𝑀𝐼 and L𝑠ℎ𝑖 𝑓 𝑡 0.23 ± 0.03 0.06 ± 0.01 0.26 ± 0.05 0.07 ± 0.02 0.16 ± 0.04 0.03 ± 0.01 0.18 ± 0.04 0.03 ± 0.01
TSFP w/o L𝑀𝐼 0.17 ± 0.04 0.04 ± 0.01 0.18 ± 0.04 0.05 ± 0.02 0.12 ± 0.03 0.02 ± 0.01 0.15 ± 0.03 0.02 ± 0.01
TSFP w/o L𝑠ℎ𝑖 𝑓 𝑡 0.19 ± 0.04 0.05 ± 0.01 0.21 ± 0.05 0.05 ± 0.02 0.15 ± 0.05 0.03 ± 0.01 0.16 ± 0.04 0.02 ± 0.01

TSFP not freezing representation 0.17 ± 0.02 0.03 ± 0.03 0.20 ± 0.05 0.05 ± 0.04 0.10 ± 0.03 0.01 ± 0.01 0.09 ± 0.03 0.01 ± 0.01
TSFP freezing initialized parameters 0.16 ± 0.08 0.03 ± 0.02 0.19 ± 0.05 0.04 ± 0.02 0.09 ± 0.03 0.01 ± 0.01 0.08 ± 0.04 0.01 ± 0.01

TSFP w/o initialization 0.35 ± 0.09 0.08 ± 0.07 0.38 ± 0.11 0.07 ± 0.06 0.42 ± 0.12 0.06 ± 0.04 0.41 ± 0.13 0.06 ± 0.04
TSFP w/o initialization and L𝑠ℎ𝑖 𝑓 𝑡 0.43 ± 0.09 0.11 ± 0.07 0.45 ± 0.10 0.12 ± 0.06 0.54 ± 0.13 0.09 ± 0.05 0.53 ± 0.14 0.11 ± 0.05

TSFP w/o 𝑍𝑈 0.18 ± 0.03 0.05 ± 0.02 0.19 ± 0.04 0.05 ± 0.02 0.14 ± 0.03 0.02 ± 0.01 0.16 ± 0.04 0.02 ± 0.01
TSFP 0.13 ± 0.02 0.02 ± 0.02 0.16 ± 0.04 0.04 ± 0.02 0.09 ± 0.03 0.01 ± 0.01 0.06 ± 0.01 0.01 ± 0.01

Figure 2: The experiment results for the IHDP dataset under different RCT data ratios in the training data.

5.4 Performance Analysis
Table 1 shows the prediction performance with varying baselines
and our methods. First, representation-based methods generally
outperform generation-based methods and meta-learners, which
shows the effectiveness of causal representation learning. Note that
our proposed TSPF exhibits the most competitive performance in
most cases, outperforming all the baselines except for the 𝜖ATE met-
ric in out-sample scenario. In the comparison of two-step methods,
we can see that CorNet [26], which adopts a nonlinear residual
module, outperforms the Twostep linear method based on the as-
sumption that the residual 𝜂 (𝑋𝑖 ) is linear and additive. In addition,
our method stably outperforms the other two-stage methods, show-
ing the effectiveness of our pretraining-finetuning framework.

5.5 Ablation Study
After evaluating the overall performance of our method, we per-
form ablation studies to validate the effectiveness of each module
in our approach. Firstly, we consider employing all the modules in
the first stage and taking away the mutual information term and/or
the shift regularization term. Then we include all the modules in
the second stage and test the effect of removing the reconstruction
module and/or the IPM distance. To validate the soundness of our

training algorithm, especially the initialization strategy, we also
evaluate the performance of TSPF when not freezing the founda-
tional representation module 𝜙 , freezing the initialized parameters
in 𝑔0 and 𝑔1, without the initialization strategy, and without the
augmented representation 𝑍𝑈 . The results are presented in Ta-
ble 2, which shows that each component in our framework plays an
important role in accurately estimating CATE. In the first/second
stage, L𝑟𝑒𝑐 /L𝑠ℎ𝑖 𝑓 𝑡 is more important than L𝑖𝑚𝑏 /L𝑀𝐼 . In addition,
our initialization strategy significantly improves the performance.

5.6 In-Depth Analysis
5.6.1 RCT Data Ratio. To validate whether our framework per-
forms well with limited RCT data, we further explore the effect of
using different ratios of RCT data in the training set. We conduct
experiments with a sequence of increasing ratios from 2% to 20%.
For each scenario, the optimal network size and hyper-parameters
are finetuned to ensure fair comparison. The results in Figure 2
show that our method is robust to the change of RCT data ratio
and outperforms the baselines under different RCT ratios.

5.6.2 Unmeasured Confounding Strength. Our approach aims to
achieve unbiased estimation of CATE in the presence of unmeasured
confounding. To verify the validity under different strengths of
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Table 3: Experimental results on the IHDP dataset with unmeasured confounding strength 𝑐 = 10 and 𝑐 = 50. The best result is
bolded and the second best is underlined.

unmeasured confounding strength 𝑐 = 10 unmeasured confounding strength 𝑐 = 50

In-sample Out-sample In-sample Out-sample

Methods √
𝜖PEHE 𝜖ATE

√
𝜖PEHE 𝜖ATE

√
𝜖PEHE 𝜖ATE

√
𝜖PEHE 𝜖ATE

T-learner 0.42 ± 0.06 0.03 ± 0.02 0.47 ± 0.08 0.06 ± 0.05 0.48 ± 0.05 0.05 ± 0.02 0.53 ± 0.06 0.04 ± 0.03
S-learner 0.99 ± 0.26 0.05 ± 0.04 1.29 ± 0.34 0.13 ± 0.11 1.17 ± 0.11 0.05 ± 0.03 1.51 ± 0.19 0.11 ± 0.10
DR-learner 0.69 ± 0.12 0.06 ± 0.03 0.72 ± 0.13 0.10 ± 0.05 0.73 ± 0.11 0.07 ± 0.04 0.80 ± 0.13 0.08 ± 0.06
Causal Forest 1.93 ± 0.31 0.08 ± 0.07 1.85 ± 0.28 0.24 ± 0.22 1.98 ± 0.18 0.13 ± 0.06 2.04 ± 0.34 0.29 ± 0.19
TARNet 0.26 ± 0.06 0.03 ± 0.02 0.27 ± 0.13 0.04 ± 0.04 0.52 ± 0.20 0.09 ± 0.09 0.53 ± 0.24 0.11 ± 0.11
CEVAE 3.09 ± 0.92 0.19 ± 0.16 3.19 ± 1.22 0.41 ± 0.33 3.50 ± 0.51 0.25 ± 0.16 3.39 ± 0.45 0.65 ± 0.32
SCIGAN 2.74 ± 0.68 0.62 ± 0.28 2.77 ± 0.89 0.56 ± 0.30 2.94 ± 0.42 0.46 ± 0.25 2.90 ± 0.35 0.75 ± 0.38
DragonNet 0.19 ± 0.04 0.03 ± 0.02 0.23 ± 0.05 0.06 ± 0.07 0.23 ± 0.05 0.06 ± 0.07 0.29 ± 0.13 0.07 ± 0.04
DESCN 0.36 ± 0.17 0.04 ± 0.03 0.42 ± 0.26 0.08 ± 0.09 0.46 ± 0.14 0.09 ± 0.05 0.55 ± 0.23 0.08 ± 0.06
DRCFR 0.70 ± 0.32 0.09 ± 0.08 0.92 ± 0.74 0.18 ± 0.22 1.21 ± 0.80 0.30 ± 0.20 1.17 ± 0.72 0.26 ± 0.18
Twostep linear 0.70 ± 0.16 0.29 ± 0.25 0.83 ± 0.30 0.30 ± 0.39 0.76 ± 0.21 0.42 ± 0.23 0.83 ± 0.25 0.33 ± 0.31
CorNet 0.23 ± 0.12 0.05 ± 0.04 0.27 ± 0.13 0.04 ± 0.04 0.39 ± 0.19 0.08 ± 0.08 0.38 ± 0.18 0.07 ± 0.07
TSFP (ours) 0.15 ± 0.04 0.02 ± 0.02 0.15 ± 0.04 0.02 ± 0.02 0.15 ± 0.03 0.02 ± 0.01 0.17 ± 0.07 0.02 ± 0.02

Figure 3: Sensitivity analysis on the reconstruction loss strength 𝜆1, covariate imbalancing loss strength 𝜆2, mutual information
loss strength 𝜆3 and RCT shift loss strength 𝜆4 on the IHDP dataset.

unmeasured confounding, we add a comparison of the performance
under low (𝑐 = 10) and high (𝑐 = 50) unmeasured confounding
effect, which is shown in Table 3. The results show that our method
stably outperforms baselines with varying 𝑐 .

5.7 Sensitivity Analysis
Despite there are many hyper-parameters in our TSPF framework,
they present in two separate stages, i.e, 𝜆1 and 𝜆2 in the first stage,
while 𝜆3 and 𝜆4 in the second stage. As a result, the hyper-parameter
search space is significantly reduced, compared with simultane-
ously searching four hyper-parameters. We explore the sensitivity
of the hyper-parameters on the IHDP dataset and the results are
shown in Figure 3. For all four hyper-parameters, the best result
is achieved with moderate values. The performance dramatically
drops with low values of hyper-parameters, which further shows
the effectiveness of each component in our method.

6 Conclusion
This paper studies the CATE estimation in the presence of unmea-
sured confounding fusing both large-scale OBS data and small-scale

RCT data. We propose a two-stage pretraining-finetuning frame-
work to tackle the overfitting problem caused by the small-scale
RCT data. Specifically, the foundational representation learned in
the first stage is used to adjust for the measured confounding in
the OBS data. The augmented representation learned in the second
stage is used to adjust for the unmeasured confounding guided by
the RCT data. To avoid overfitting caused by the small-scale RCT
data in the second stage, instead of training a separate network,
we further propose to partially initialize the network parameters
from the pretrained network from the first stage. Compared to the
previous CATE estimation methods that combine OBS and RCT
data, our approach has the advantage of not restricting the data-
generating process (e.g., linearity or additive noise assumptions)
and not suffering from overfitting. The extensive semi-synthetic
and real-world experiments conducted on two widely-used public
datasets demonstrate the superiority of our method.
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